Wednesday, January 26, 2022 4pm to 5pm
Virtual Event
Dr. Bei Zeng (Hong Kong University of Science and Technology)
Error-correcting codes were invented to correct errors on noisy communication channels. Quantum error correction (QEC), however, may have a wider range of uses, including information transmission, quantum simulation/computation, and fault-tolerance. These invite us to rethink QEC, in particular, about the role that quantum physics plays in terms of encoding and decoding. The fact that many quantum algorithms, especially near-term hybrid quantum-classical algorithms, only use limited types of local measurements on quantum states, leads to various new techniques called Quantum Error Mitigation (QEM). This work addresses the differences and connections between QEC and QEM, by examining different application scenarios. We demonstrate that QEM protocols, which aim to recover the output density matrix, from a quantum circuit do not always preserve important quantum resources, such as entanglement with another party. We then discuss the implications of noise invertibility on the task of error mitigation, and give an explicit construction called quasi-inverse for non-invertible noise, which is trace-preserving while the Moore-Penrose pseudoinverse may not be. We also study the consequences of erroneously characterizing the noise channels, and derive conditions when a QEM protocol can reduce the noise.
Virtual Event
Undergraduate Students, Faculty & Staff, General Public, Graduate Students
UTD strives to create inclusive and accessible events in accordance with the Americans with Disabilities Act (ADA). If you require an accommodation to fully participate in this event, please contact the event coordinator (listed above) at least 10 business days prior to the event. If you have any additional questions, please email ADACoordinator@utdallas.edu and the AccessAbility Resource Center at accessability@utdallas.edu.